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The torque required for a steady rotation of a disk in a
quiescent fluid
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Abstract. For large values of the Reynolds number Re two terms of the asymptotic series for the torque have been
calculated. They are of order Re- '/ 2 and Re -1 3 /'4, respectively. The second term has been obtained after
investigation of the double-deck structure which is present near the edge of the disk over a length of order Re -3/7.

1. Introduction

In a previous publication [1] the authors have considered the flow outside a rotating disk of
finite radius a on the basis of the boundary layer equations. Near the edge of the disk this led
to a singularity in the axial velocity w of strength O(r - a)- 21 3 for r a, where r is the radial
coordinate. This singularity is due to the sudden change in boundary conditions in the plane
of the disk. While for r < a the radial and tangential velocities in this plane are prescribed,
for r > a the derivatives in axial direction of these velocities vanish due to symmetry with
regard to the disk plane. This sudden change of the boundary conditions in radial direction
means that the boundary layer equations lose their validity locally. The situation is analogous
to that investigated by Smith and Duck [2] and by Smith [3] for a jet streaming along a
suddenly ending wall. They found that due to the sudden change in boundary conditions a
double-deck structure arises in the boundary layer over a length of O(Re- 3 7) at both sides
of the edge of the wall. The same occurs at the edge of the rotating disk, though there is an
additional tangential velocity. The fact that there is no triple deck is due to the absence of a
driving external mainstream, which makes that no pressure variations outside the original
boundary layer occur and therefore no upper deck exists. In the lower deck the tangential
shear stress is numerically modified, leading to an additional contribution to the torque
required for a steady rotation of the disk. This contribution is O(Re- 13/14 ). In this way we
have obtained two terms of the asymptotic series for the torque in the limit Re-> x.

2. The middle deck

For an axially-symmetric system the Navier-Stokes equations are in dimensionless form, see
e.g. [4],

du du v2 ap _od2u d _u_ a d2u
U - r + w - - - = - + Re rr + z

~~~~~~dr dz r fr dz d '
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dw dw dp Ra d2w 1 dw d2w]
U r + w Re + - -- + 2

dr az dz dr r dr a)d

- d (ur)+ d = 
r dr dz

1 d 1 dp
U- w --

r 0Z' r r '

where u, v, w are the radial, tangential and axial components of the velocity, while b is the
stream function and p the pressure. Lengths have been made dimensionless with the radius
a, velocities with Qla and the pressure with pfl2 a2 . 1Q denotes the angular velocity of the disk
and p the fluid density. The Reynolds number Re is fZa2 /v with v the kinematic viscosity
coefficient.

After transformation to boundary layer variables,

Z = Re-1/2; , w Re-1/2 Re-1'2 

the equations become

du du v2 dp 1 d2u d (u a d2U
dr _15_Z;" 7 dr dr2 r+ r; 7 '

u + w - - = + Re |ar2 + dr \r7Ja dz

dv ,dv uvd v d (v)l d 2

u + = -Re 0' law aw2

au= a+Red + w 2 (2.1)dr 7Z di' r r d2
'

1 
- - (ur)+ - =0

r drz r dr

In boundary layer theory all variables u, v, w, 0, r and are O(Re°). In the first two
equations (2.1) the terms with Re-1 are neglected and the third equation simplifies to
dpldz= O. Since it follows, see [1], that -- oo for rJ, 1, this theory is not valid in a small
region near r = 1. Let us suppose that the size in r-direction of this small region is Re- with
a > O0. We introduce a new variable r* in this region by

r= 1 + r* Re -
a or r* = Rea(r - 1) . (2.2)

Then d/dr = Re(d/ldr*) and it is assumed that in the r*-region derivatives with respect to r*
are 0(1).

We use the following asymptotic expansions for Re--> o, r -- 1 and r* fixed:

f(r, z;; Re) = q0 (r, z) + ,l1(Re)p(r*, ;) + . ,

u(r, z; Re) = uO(r, z) + /l(Re)u(r*, ;z) + * ,

v(r, ; Re) = vo(r, ) + vl(Re)v(r*, ;) + . ,
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4(r, ; Re) = w0 (r, ) + Re"A,u(Re)0x(r*, ) + ,

p(r, ; Re) = po(r, z) + 7r(Re)Pl(r*, 2) + *" .

Here i0, u0, etc. are the solutions of the Navier-Stokes equation for r < 1. In the notation of
[1, 4] these are

iO = 2 r2H(z) , v0 = rG(z) , Po = Re -1 P(z).

After substitution of these quantities in (2.1) a set of ordinary differential equations is
obtained for G, H and P, which can be solved numerically. Henceforth, these functions will
be considered as known, see [4], where the sign of H is taken opposite.

In order to compensate for the singularity of w from boundary layer theory if r 1, it is
necessary that the second term in the expansion of w is more important for Re oo than the
first one. This means that the order of t,I will be larger than Re - " for Re-* o. Using (2.2)
this allows us to replace r by 1 in the expansions. Moreover, it follows from the third
equation (2.1) that also the second term in the expansion of p will be more important than
the first one. The expansions then become

i = 2H(z) + l(Re)(r*, 2) +...,

u = 2H'() + l(Re)ul(r*, ) +..,

v = G(z) + v(Re)vj(r*, z) + ", (2.3)

w = Retl(Re) i(r*, ) +.,

p = 7r(Re)pl(r*, ) + -

dul1 dwI O 1= l
-+ =O, __ W1 -

dr* dz di dr*

Substitution of the expansions (2.3) into (2.1) yields as most important terms

1 H' - d l Re21 ulRer -2 H" dul)=H = Re l r* 2/s 2 H dr* 2 ldr*/1 r 2'

Rev, 1 H' +v Re 2-I"G'01 Re V1 ~
1 2 dr*/ '+ r 2=

2a, 1 d' H' dwe i=-r1 dp, + Re ld _

~Or=Re 2H 1dr* di R3 ,1dr*2

Assuming a <1 we retain

2H' + 2 H"wd = 1 r* 

1 dv

2 H' dr* 1 O

Re2a-1 1 dw dp2C HRe r* - a7 '
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Next, assuming a < ½ (the smaller a, the more important Re -, so that we have to search for
a minimum value of a), it follows from the last equation that

r = O(Re2 ,-I ), (2.4)

and hence that the order of 7r1 is smaller than the order of Aq. Moreover, the second
equation shows that A1 and v are of equal order. Then the equations become

du, 1 H vi 1 d wl= Pl
H' d + H" 1 =, 1 H' + G w =0, 2 H dr* dz (2.5)

Combination of the continuity equation in (2.3) with the first equation (2.5) permits
integration. This leads to the expressions

wl(r*, z) = -E'(r*)H'(i),

qp1(r*, ) = E(r*)H'() + K(zi) ,

ul(r*, ) = E(r*)H"(Z) + K,(z) , (2.6)

vl(r*, 3) = 2E(r*)G'() + K 2(z) ,

pl(r*, ;F) - 1 E"(r*) f {H'()) 2 d + Ei(r*) .

E(r*), El(r*), Kl(z) and K 2 (z) are unknown functions introduced by the integrations.
For r* --> the solutions (2.6) must be matched to the outer Goldstein solution. This is the

boundary layer solution [5] valid for r > 1 and z > (r - 1)1/3, which has been calculated in [1]
for the case of the rotating disk. The solution is given by equations (4.5) of [1]. Substituting

6 = (r - 1)1 / 3 = Re-a/3r* 1/3

this solution becomes (as r*-> o)

q,(r*, ) = ½H() + A Re-a'3 r* 3 H'(z) + O(Re-2a/3),

u(r*, ) = H'(') + ½A Re-a'3 r*l' 3 H"() + O(Re-2"/3 ), (2.7)

v(r*, ) G(Z) + A Re-"/3 r*/ 3G'(z ) + O(Re-2c/ 3 ),

wv(r*, ) = - A Re2 /'3 r*-2/3H'(z) + O(Rea/3),

where A is a constant given in [1].
Comparing (2.7) with (2.3) and using (2.4), we conclude

Cl = Re-/3 , 21 = Re-/3 7,) = Re"/3- (2.8)

Comparison of (2.7) with (2.3) and (2.6) leads to

E(r*)- Ar* 1/3 as r* ,--->o (2.9)
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while K,(z) and K2(z) are both identical to zero. Furthermore

E(r*)-->O as r*- -, (2.10)

since all expressions (2.6) then must vanish.
Summarizing, the expressions for the middle deck become

i(r, ; Re) = ½H(z) + Re-'a3 E(r*)H'(z) + O(Re-2"a3 ) 

u(r, ; Re) = H'() + Re-a/3 E(r*)H"(z) + O(Re-2a/ 3) 

v(r, ; Re) = G(z) + 2 Re-a'3E(r*)G'(z) + O(Re-2/ 3 ) , (2.11)

w(r, z; Re) = -Re2 '3E'(r*)H'() + O(Re'/ 3 ),

p(r, ; Re) = ReS"'3 -1[ - E"(r*) j {H'()}2 d + El(r*)].

Since for z = 0, r* > 0 the solutions (2.11) do not satisfy the boundary conditions du/dz = 0,
dv/dz = 0 and for z = 0, r* < 0 neither satisfy u = 0, v = 1, there must be a lower deck where
the viscous terms will be of importance. Equations (2.5) show that the flow in the middle
deck is inviscid.

3. The lower deck

In the lower deck the coordinates are

r* = Rea(r - 1), z* = Rezl . (3.1)

The asymptotic expansions for Re-- , r-> 1, z-> 0 with r* and z* fixed are

qr(r, ; Re) = Re-_PO(Re)~(r*, z*) + ... ,

u(r, z; Re) = I.t (Re)u(r*, z*) + ...

v(r, z; Re) = 1 + vl(Re)vl(r*, z*) +..., (3.2)

w(r, z2; Re) = Rea-Lj*(Re)w*(r*, z*) +..,

p(r, z; Re) = ,rl(Re)pl(r*, z*) + ...

It follows from (2.1), (3.1) and (3.2) that

u = dz T(Re) dz hence u* = -_
r 3~ dz* '

1 d4' __,* adT
w =-- r -Re"'- /T(Re) , hence w* =- 

r r dr -W dr* '

The continuity equation is

+ = 0.
dr* dz*
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For r* -* o the solution (3.2) must be matched to the inner Goldstein solution, which is the
boundary layer solution valid for r > 1, while 1/(r - 1)1/3 is not too large. This solution is
given by equations (3.3) of [1] as

u= Re- 3r*113f( Re 3r" 11 3 +

1v=1+Re~~/
3 r~l/3l R~ ~(3.3)

v = 1+ Re- /3r*3go Re_-a/3r*1/3+· ·

Comparing with (3.2), we see that

/3~~~~· R - , /3
/pt = Re` 3 , f = a , v =Re

u 1 W, r.13f *
r*-- o (3.4)

ot(r*, z*)-rlg,-, 113g ).

Since the pressure in the middle deck is O(Re5' / 3- ') and this must be matched to the
pressure in the lower deck, we also have

iT = Re /3-1 . (3.5)

Considering now in the lower deck the orders of magnitude of the various terms of the first
equation of motion (2.1) we find

du Ou =2u =(Re/3), 2

Odr r=,i O(Re R

__=O(Re
8 '~3 ') Rel d2 ld - 2 dp 8O(Re831) + 5-1u

dr r2 erU r

Since the pressure differences in the double deck are generated by velocity differences in
the lower deck, these must be of the same order which means

1 8 3
a= a-1 or a (3.6)

3 3 7

The first and second equation (2.1) now become

du* du2U dP* *+ w2 ,
u dr- dz* r + z*2-

(3.7)
dvl +v T dv_ d v*

1 Odr* dz* d*2

In the third equation (2.1) the terms u(didr), (diOv/£) and 20/0£ 2 are all O(Re'),
while Re(dpld) = O(Re2). Therefore, this last term must be zero, i.e.

p*

=z* , p =p*(r*) (3.8)
Oz*
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The continuity equation is

du* awT
dr* + dz* =0. (3.9)

4. The double deck

Summarizing, we have obtained the following results.

middle deck:

q(r, ; Re) = ½H() + Re-1/7 E(r*)H'(z) + ,

u(r, ; Re) = ½H'() + Re-l/7E(r*)H(z) +... ,

v(r, z; Re) = G(;z) + 2 Re-l/7 E(r*)G'(z) + ... , (4.1)

w(r, ; Re) = -Re2/ 7E'(r*)H'() +. ,

p(r, z; Re) = Re 2/[
- 1 E "(r*) {H'(1)}2 d + E,(r*)] +.

lower deck:

/P(r, z; Re) = Re-2 /hrp(r*, z*) + ,

u(r, ; Re) = Re-l/7u(r*, z*) + ,

v(r, ; Re) = 1 + Re-'/7v*(r* , z*) +. , (4.2)

w(r, z; Re) = Rel/7 w*(r*, z*) + ,

p(r, ; Re) = Re-2 /7 p1(r*) +...

The thickness of the middle deck is O(Re - '2 ) and that of the lower deck is O(Re-9/ 4 ).
We still have to show that there is no upper deck. If it existed, there would be a pressure

O(Re- 2 /7 ) in this potential region. But for --- > the functions G(z), G'(Z), H'(Z) and
H"(z) all vanish, which means due to (4.1) that u and v both are o(Re-1/7). According to
Bernoulli's law p then must be o(Re -2 /7) and so there is no upper deck in the approximation
we are investigating. This means

El(r*) = . (4.3)

For the pressure we then have

middle deck: p(r, z; Re)= Re 2/7[ - 2 E(r*) {H'(Z) 2 dz] +,

(4.4)
lower deck: p(r, z; Re)= Re-2"[- E"(r*)f {H'(Z)2 ...

Boundary conditions at z* -- for the equations (3.7) are obtained from matching of the
lower deck with the middle deck. For z-- 0 we obtain from (4.1)

267
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u(r, z; Re) = { 2 + Re-" 7 E(r*)}H"(0) = Re-l 7 { ½ * + E(r*)}H"(0),

v(r, z; Re) = 1 + { + 2 Re-'/ 7E(r*)}G'(O) = 1 + Re-1/7{Z* + 2E(r*)}G'(O).

Hence, for z*-->,

u*(r*, z*) - { Z* + E(r*)}H"(O),

v*(r*, z*) {z* + 2E(r*)}G'(O) .

5. Renormalization of the equations of the lower deck

In order to get rid of some constants and to use the same notation as F.T. Smith [3], we
introduce

K = ½H"(0), o = G'(0), y= 4 {H'()})2 d, (5.1)

I,*(r*, z*) = y
2 1 7K-1'/7t(X, Z) , u*(r*, z*) = 'l/7K3 1 7

U(X, Z)

uv(r*, z*) = /7K-4/7V(X, Z) , w*(r*, *) = -1/7K 4/7W(X, Z)
1 (5.2)

p*(r*) = 2/7K67p(X) , 2E(r*) = /7K -4/7A(X),

r* = y 3
/7K -57X, * = 1/7K-4/7 Z .

Equations (3.7), (3.9) and (4.4) then become

dU U _ dP 2U
U- W --

dX dZ d2 

dU dW daI aI' d2A
-dX+- = , U = - W=--X P = dX 2 (5.4)

while boundary conditions are

for X< 0, U = O, V=0,

Z=0, , =0 d dv (5.5)
forX>, 0, =0.

az aZ

From (4.5), (2.10) and the continuity equation in (5.3), we obtain

X-- -o: U-Z, V- Z , W--0, P-0O, (5.6)

Z--c: U- z + A(X), V- Z + A(X) , (5.7)

and, finally, using (4.4) and (2.9),

X---> : P--- 0. (5.8)
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6. Asymptotic behaviour of the solutions for X-- -oo

In order to solve the system of equations (5.3), initial values for the solution at some large

negative value of X must be available. It appears that only exponential decrease of the
various functions U, W and P for X---> - satisfies (5.3) and its boundary conditions.

Therefore, we put as in [2]

U = Z + f'(Z) e , P=be"x(A>O), so W=-Af(Z)eAx. (6.1)

Substituting these expressions in the first equation (5.3) and neglecting e2AX, we obtain

f'"(Z) - AZf'(Z) + Af(Z) = Ab

or, with Z= A-'32,

f"'(Z) - Zf'(Z) + f(Z) = b . (6.2)

Differentiation of (6.2) yields

f(4)(Z) - Zf"(Z) = 0. (6.3)

According to [6] the solutions f"(Z) of (6.3) are the Airy functions Ai(Z) and Bi(Z). Since
Bi(Z) increases exponentially with Z --> , we must have

f"(Z) = c Ai(Z) .

With the boundary conditions f(O) = 0 and f'(0)= 0, it follows from (6.2) that f"'(0) = b.

Then

Ai(Z)
f"(Z) = b Ai(Z) (6.4)

The integration of (6.2) has to be performed from a large value of Z to Z = 0, since

otherwise the function Bi(Z) creeps into the solution. Since, see [6], fJ Ai(Z) dZ = 3, we

have

f'(Z)- 3 Ai for Z cc. (6.5)
3 Ai'(0)

For large values of Z, f and f' are much larger than f" and f"'. This leads to a loss of

significant digits when integrating (6.2). Therefore we replace f by the function

g(Z) = b f(Z) + C1 + c 2Z (6.6)

and choose cl and c2 in such a way that also g and g' vanish for Z- oo. Using (6.5) it follows
that c2 = -3 and, by elimination of f from (6.2) and (6.6), we obtain cl = -Ai'(0) and

269

g... (Z)- Zg,(Z) + A(Z) - 0 (6.7)
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To initialize the integration at some large value of Z we take, see [6],

2Ze- 216g"(Z)= Ai(Z) 2 T" (1- 216

g'(Z) 2 3

g(Z)= Zg'(Z) - Ai'(Z) - Zg'(Z)+ eZ (1 + 21 l + )

where = 223/2
g'(Z), which is relatively the least accurate, is used as shooting parameter in order to

make f'(0) = 0 (g'(0) = - ). It turned out that g(0) and g"(O) agreed in all 15 digits with the
values for -Ai'(0) and Ai(0) available in [6]. As initial value for Z we took Z = A" 3 Zmax

with Zmax = 12.5.

We still have to determine the value of A. From (5.4), (6.1) and (5.7) it follows that

b X bX- -oo, A(X) --- e and f'( )=- _ . (6.8)

But from (6.5) we have

1 A1/3 b
3 Ai'(0) for-00.

Combination of these results leads to

A = {-3 Ai'(0)}3 /7 = 0.897238191 . (6.9)

The remaining unknown parameter b has to be determined by a shooting procedure in order
to satisfy the boundary condition (5.8).

For the determination of initial conditions for V at a large negative value of X, we proceed
as follows. Put

V= Z + g,(Z) eX . (6.10)

Together with (6.1) we substitute this in the second equation (5.3) and neglect e2AX. Then

g'(Z)- AZg,(Z)= -Af(Z)

or

g'(Z) - Zg(Z) = -XA 3 f(Z). (6.11)

Boundary conditions are

g,(0)=0 and, as follows from (5.7) and (6.8), g,(oo)=_ b2 (6.12)
A2
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The solution of (6.11) can be written as

g,(Z) = c Ai(Z) + bh(Z), (6.13)

where the first term is the complementary function and the second term a particular integral.
Substitution of (6.13) into (6.11) leads to the differential equation for h(Z),

1/3

h"(Z) - Zh(Z) =- b f(Z)

Elimination of f(Z) with the aid of (6.6) gives
/~1/3 1 f }. (6.14)

h"(Z) - Zh(Z) =Ai') {g(Z) + Ai'(0) + } (6.14)

This equation can be split into three equations. Using (6.9) we obtain

3 3 -
h'(Z) - Zh,(Z) = g(Z) with solution h(Z) = - g'(Z

1 1
h'(Z)- Zh 2(Z) = Z with solution h2 (Z) = -2 '

h'(Z) - Zh3 (Z) = -A 13 with solution h3 (Z) = A131r Gi(Z),

where Gi(Z) is the related Airy function satisfying the standard equation (10.4.55) of [6],
viz.

w"(Z) - Zw(Z) = -7r-1 (6.15)

with prescribed values for w(0) and w'(O). In order to evaluate Gi(Z), we have to integrate
this equation from some large value of Z, say Zmax = 12.5A1/3, to Z=0. Initial values
w(Zmax) and w'(Zmax) can be obtained from the asymptotic series for Gi(Z) which is

Gi(Z)- r - 3j+1 , Z-->oo , (6.16)=o Zi
where a = 1 and a,+1 = (3j + 1)(3j + 2)aj for j 0.

The series (6.16) is semi-convergent and, hence, it produces only values of restricted
accuracy. Therefore, the initial values taken for W(Zmax) and w'(Zmax) are contaminated by
contributions of Ai(Z) and Bi(Z), that is,

w(Zmax) = Gi(Zmax) + c1 Ai(Zmax) + c2 Bi(Zma) ,

w'(Za.) = Gi'(Zmax) + c, Ai'(Zma) + C2 Bi'(Z,,max) .

The coefficient c2 can be calculated by integrating (6.15) to a value, say 2Zmax, where the
exponentially increasing term c2 Bi(Z) is extremely dominant since the other terms decrease.
Dividing by the value of Bi(2Zmax) we obtain c2. We remove the terms with c2 from the
initial values for W(Zmax) and w'(Zmax). That these values still contain a term with Ai(Z)
and Ai'(Z) is not at all harmful, since according to (6.13) a term with Ai(Z) should anyhow
be added to h(Z) in order to make g1(O) = 0. This last condition allows us to calculate c in
(6.13) and then to compute g,(Z).
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7. Asymptotic behaviour of the solution for X--- +-

It has been remarked in Section 3 that for X--> - the solution in the lower deck must match
the inner Goldstein solution (3.3). Transformed to the coordinates introduced in Section 5
this solution is

z
710 = 1/3Xl/3

K

Then

dU= K
oz = K-f;(70) ,dZ

aV
dZ= -1K-'g(r/°) dZ

The functions f, and go satisfy the differential equations [1]

3fo + 2fofg - f,2 = 0, (

3g" + 2fog; - ftgo = 0 .

Since, according to (5.7), dU/ldZ and dV/dZ are both equal to 1 for Z---, we have

71 0-- o, f(77 0 )- K ,

(7.1)

(7.2)

go(70) -> rK.

Boundary conditions at rlo = 0 are

fo() = 0, f;(0) = 0, g;(0) = 0.

Equation (7.1) possesses the similarity property, which means that if we replace fo(q70 ) by
cfi(1 1), with q, = co, the equation remains invariant. Then

As boundary conditions for f, we take

fA( = 0, f;(0) = 1, f,(0) = 0,

which implies that the boundary-value problem for f0 is transformed into an initial-value
problem for f,. Numerical solution leads to f(co) = 0.489094382. Since f(oo) -- K, the value
of c is determined by

__ K 11
/ 3

C= tf'() J 

Then ft(0) = 1.610911012K2 /3 and f (i 0o)- K7 0 + 0.891998003K2 /3 for 7--0>. Hence, we
have for X- -

U(X, 0)- 1.610911012X /3 and U(X, Z) - Z + 0.891998003X" /3 for Z---> .

-2/3xl/3 ,o) V= 0'_ K -2/3xl/3 go (,q ,

f,(70) _ C3f,,(,ql) , f'O" (q.) CY -(7 1 
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This implies, using also (5.4,,

A(X)- 0.891998003X /3 , P(X) 0.198221778X- 5 /3 for X co. (7.3)

It follows from (7.1) and (7.2) that go = cfo is a solution of (7.2), where c is an arbitrary
constant. Hence, to -* 0, g'(7%0)-* K corresponds go(O) = 1.610911012aK2 /3 and also

V(X, 0) - 1.610911012X 1/3 for X-*o.

In order to investigate the next term in these asymptotic expansions we put

= K -' 3X2 3fo(t 0 ) + K X' 0(7 0o) . (7.4)

Substitution in the first equation (5.3) leads for go to the equation

3o + fo(P - fOPo + foPo = , (7.5)

provided the pressure term can be neglected. The boundary conditions are

%0(0) = O, qo(O) = O and q((op) = 0.

Hence, we have an eigenvalue problem. The largest eigenvalue f appears to be j3 = - and
the pertaining eigensolution is

'Po = f 0o - fo -

Since the terms in (5.3) which lead to (7.5) are O(X - ') = O(X-413), it is permitted to
neglect the pressure term since this is O(X-813 ). The term with po in (7.4) implies that all
asymptotic results for X--- have a relative error O(X -1 ) corresponding to an origin shift.

8. Asymptotic behaviour of V(X, Z) for Z -o

The approximation

U- Z + A(Z) for Zoc

contains an exponentially small error as can be seen from differentiation of (7.1) which gives

3f 4 + 2fof'o' = 0.

However, V-- Z + A(X) contains an error which is only algebraically small. Hence, we
would make an important error, if we would use this approximation for a finite value of Z.

Before concentrating on the expansion of V, we have to derive the expansion for W. It
follows from the continuity equation in (5.3) that this is
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The function D(X) can be determined by substitution in the first equation (5.3). This leads
to

D(X) = -P'- AA'.

Thus W---{Z + A(X)}A'(X)- P'(X). Putting Z + A(X)= Y, we have U = Y, W=

- YA'(X) - P'(X) and we take

V- Y+ a(X) + 2 ( X) + *, Y- (8.1)

as asymptotic expansion for V.
Transforming the second equation (5.3) from the coordinates (X, Z) to (X, Y) and using

the expressions for U and W, we obtain

dV dP V 2V8.2
dX dX dY dy2 

Substituting (8.1) into (8.2) and equating all powers of y-' to zero, the result after
integration with respect to X, is

a 1 = P, a2 =0, a 3 =- _p 2 a 4= -2A', a5 = P3 . (8.3)

The asymptotic expansion for V then becomes

P P2 2A' P3

V- Y+- - - + +--+, Y= Z+A(X)-- (8.4)Y 2y3 y4 2Y5

For X-- - and neglecting terms of order e2AX, this result is in agreement with the result
obtained in Section 6.

9. The numerical solution of the equations of the lower deck

After elimination of W, equations (5.3) and (5.4) are written as

dI aU d dU dP d2 U

dZ X U dX dZ 2

dA dB (9.1)
dA dB

=dX ' dX '

This is a set of equations with only first-order derivatives in X. Unknowns are A(X),
B(X), P(X), U(X, Z) and P(X, Z). A fifth equation is given by the boundary condition

(5.7),

Z --> 0 U--- Z + A(X).
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In Z-direction we apply the transformation

sinh /3p/
Z = Zmax sinh 3 with Zmax = 12.5 and / =5. (9.2)

In the finite difference method which is used to solve (9.1) we take xj= jh, h = 1/n and
j = 0, 1, ... ., n. This gives a greater density of points near Z = 0. In X-direction we use a
transformation X=f() with f(e)= 10 for X<0, f() = 3 for O<X<8 and f(e)=
12f - 16 for X > 8. Moreover we replace the variable U by a variable T defined by

U = Z + T. (9.3)

The equations (9.1) then are written as

a0
dZ

(Z + + T) dT d dT d) +dP , \fd 2 T dA 2 dT d2.lA

de de dt dZ de d,2 dZ- dA) dZ 2 J

dA
d Bf'( ) =0,

(9.4)
dB
dB + Pf'(e)=o,

Ln = 1, T(f, n) = A((),

e-sO , T( e, 1L)=°

o > o, 3T(e, zO)-4T(e, ,z) + T(e, A2) - 4Z(/l) + Z(/2) = 0.

The system (9.4) has been solved by the Crank-Nicolson method combined with an
iterative Newton-Raphson procedure in order to cope with the non-linearity in the second
equation. The first equation (9.4) has been discretized in the points (, (Zjl + Zj)/2),
j = 1, 2, ... ., n, the second equation in the points (({i-1 + e)i)/2, /u), j = 1, 2,..., n and the
third and fourth equations in the points (i-1 + 5e)/2. Together with the fifth equation these
are 2n + 3 equations for 2n + 3 unknowns at each value of provided i - 0.

If 5f >0, T(fi, AO) is also unknown. Its value is obtained with the aid of the boundary
condition d UldZ(X, 0)= 0 which leads to the last equation of the system (9.4).

We now can perform the integration in X-direction, starting for some large negative value
of X with initial values derived in Section 6. The quantity b is unknown and has to be
determined by a shooting procedure in such a way that P--*O for X-> m-, equation (5.8).

After having obtained the correct value for b, we include the equation for V from (5.3).
This is done as follows
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V= Z + s,

as a'I' / aS dS _2( d)
(Z+ T) (1+ ddZ) + d0 dZ2s -d6 a( d ) 'dZ {A2d a , dZ2

P P2 2A' P3

nC =1, S(t , n) y= A +y +2y Y Zmax + A (X ) , (9.5)Y 2Y 3 Y4 2Y 5

[e 6, S(:, O)=O
'U0 =0

6 > 0, 3( , Euo) - 4S( s, CL ) + S( 6, ) - 4Z( CL ) + Z( 2) = ° -

Initial values for S(Xo) are again obtained from Section 6.

10. The torque

The torque which has to be exerted on the disk in order to maintain the constant angular
velocity f is

M=-2irpa5 Re - 1 / 2 r2 da dr.

This torque can be split into a classical part,due to the term v = rG(z), and a part due to the
modification of the double deck. The classical part is equal to

Md = - orrpa5 f2 Re1/2 , (10.1)

where oa is given by (5.1). With the aid of (3.1) and (5.2) we obtain for the contribution due
to the double deck

M=-r5,- 2 13/14 y3/7 -5/7 VM=-2rpa Re cr K J - dX.
-E-Z dX.

Substituting dV/dZ = 1 + dSldZ, the term 1 belongs to the classical part of the torque
which, of course, is also present in the double-deck region. Hence, the additional torque is

Madd = -27rpa 5 2 Re-1 3 /1 4oy3/7 K 5/7 - dX. (10.2)

The integral will be divided as

where X0 is again the negative value of X where the numerical integration of the set (9.4)
starts. For X< X0 we use (6.10). Then

| ~-Z |dX=g(0) f eA dX= A g'(0) e ,
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where gl(O) is known from Section 6, and

fx dX 1 d- i E I {4S(X, l) -S(X, 2))}dX

where the last integral is calculated by the trapezoidal rule.

11. Numerical results

The values of the constants K = H"(0) and a = G'(0) have already been obtained in [1]
by integration of the system of differential equations for G and H. In order to calculate y, we
put

3y = yO0 (o) with NO(z) = to H'())2 di,

and we add the differential equation

dy_ 1

to the equations for G and H. The results are

K = 0.510232619, o- = -0.615922014, y = 0.054098089.

After having solved (6.7) for g(Z) and then (6.6) for f(Z), we could take initial values for
U, W and P at X 0 = -14 with an estimated value of b. The value X0 = -14 is sufficiently
large negative, since the neglected term e2AXO is 0(10-1) there. The discretized values of Z
are determined by (9.2) together with Z= A113Z.

The integration of the system (9.4) has been performed with different steps in A and .
The step in A is determined by the number n and the step in 6 is taken equal to k. The value
of b is determined in such a way that the deviation of P from its asymptotic behaviour Pa-- 0
for X-- o is delayed as long as possible.

By determining b in 15 significant digits, the deviation became only perceptible for X > 13.
The value of b strongly depends upon n, k and the precise form of the discretisation scheme.
In 6 digits some of the results are

n = 40, k = 0.01: b = -0.264212,

n = 80, k = 0.005: b = -0.267146,

n = 160, k = 0.0025: b = -0.267878,

which shows very well an error in b of O(k2).
Table 1 shows some values of A and P for larger values of X. The table is based upon the

calculations with the finest mesh. The values in the columns A + and P+ are obtained with a
value of b for which P-* +, while in the case of A- and P- the value of b is such that
P -0C for X-- 
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Table 1

X A+ A- X-'1 3A+ P+ P-

8.0 1.750394167 1.750394168 0.875197 0.007101 0.007101
9.2 1.839012481 1.839012487 0.877651 0.005466 0.005466

10.4 1.919695900 1.919695943 0.879471 0.004375 0.004375
11.6 1.994042144 1.994042433 0.880876 0.003601 0.003600
12.8 2.063179267 2.063181289 0.881997 0.003029 0.003024
14.0 2.127937037 2.127951677 0.882910 0.002605 0.002565

According to Section 7 the asymptotic behaviour of A and P is given by

A - CX
l / 3

+ c2 X
- 2 /3

+ c3 X
- 51 3

+ · , with cl = 0.891998003,

p 2 c1X-5/ 13 - -2X -8 11/3 +X -1/ 3

In Table 1 we have also given the value of X-113 A+. The difference with the limit value c1
is mainly due to the next term in the expansion. In order to find better numerical
approximations for the values of cl, c2 and c3, we have interpolated for different meshes the
values of A + in three points by the first three terms of the asymptotic expansion. The
resulting approximations for cl, c2 and c3 are given in a few digits in Table 2, and we observe
that the numerical value for c comes close to its theoretical value. The values for c2 and c3

are of course less accurate. We further remark that the interpolation errors appear to be
extremely small, namely less than 10 - 6 in A. With the same values for c, c2 and c3 in the
expansion for P we get errors less than 10 - 5.

There is a difference between the present numerical values and those of F.T. Smith [3].
With initial values of P = -106.10 - 7 and P = -108.10 - 7, which Smith takes at X 0 = -12.2,
he finds for X large, the divergences P--> +oo and P- - , respectively. Our value of P at

X= -12.2 is -47.107. The corresponding value of b would be -0.6 in Smith's calculations.
A further difference is that Smith accepts as result beyond X = 3 the first term of the
asymptotic series for P within 'graphical' accuracy. However, since the second term in the
asymptotic series is only a factor X-' smaller than the first one, this seems not to be justified.

Smith's calculations were performed with a two-zone scheme in the region 0 < X < 1 in
order to take into account the singularity in dU/dX at X = 0, Z = 0. However, we also
performed calculations with a two-zone scheme. These only modified the results for
extremely small values of X, but only very slightly at large values of X. This is in agreement
with results obtained in [1]. The use of a two-zone scheme cannot explain the differences
with [3].

Using the numerical values for K, a and y, the torque is obtained from (10.1) and (10.2) as

M - pa If 2(1.2900 Re- 112 + 0.2236 Re - 13114 ) .

Table 2

Interpolation in (9.2), (10.4), (11.6) Interpolation in (10.4), (11.6), (12.8)

n k c, c2 C, C, c2 C,

40 0.01 0.8927 -0.1133 -0.1598 0.8928 -0.1157 -0.1466
80 0.005 0.8919 -0.1116 -0.1639 0.8920 -0.1146 -0.1480

160 0.0025 0.8917 -0.1112 -0.1651 0.8918 -0.1138 -0.1509
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12. Behaviour near X = 0

From the one-zone scheme used, the behaviour of functions for X 0 cannot be obtained
with sufficient accuracy. Therefore, we investigate this behaviour semi-analytically, using
results for X T 0. The investigation of U(X, 0) and P(X) for X 0 is identical to that of
Veldman [7], except that a different value for the shear stress at X tO must be employed.
The investigation of V(X, 0) is new.

For Xt 0 we have

I(0, Z) = R 1(Z) , V(O, Z) = R(Z),

where Rl(Z) and R 2 (Z) have been calculated according to Section 9,

Z- R(Z) = Z 2 + ZA(O) + Al(O) + exp. small,
Z c0

R 2 (Z) = Z + A(0) + algebraic decrease,

dR1

U(O, Z)= dZ =a 2 Z+ a3Z2+...,

V(O, Z) = R2 = b2Z + b3Z 2 + .,

with a2 = 1.3993, a3 = -0.3216, b2 = 1.1160, b3 = 0.
For X > 0 there exists in the lower deck again an inner and an outer Goldstein solution.

The expansion of the inner solution for X 0 begins as

It(X, 7) - X2 /3 Fo(-q) + ", } = ZlX 1/ 3 .

Substituting in the first equation (5.3), we obtain

1 X-1/3 2 2-1/3 , dP X-/3,,
-- 0o = --- X + F

which means that dP/dX may also be of order X -1 13 . Then

P(X) = P(O) + P2 3 X2 13 .

The boundary-value problem for the inner solution is

3F 0' + 2FoF - F 2 = 2p2 /3 () = 0, F(0 ) = 0 , F F(o) = a2 . (12.1)

Substitution of V(X, ,1)= X 1/ 3G 0(;?) into the second equation (5.3) yields

3Gg + 2FOG; - FoGo = 0, Go(0) = 0, G(o-) = b2 . (12.2)

The expansions of the outer solutions are

itI(X, Z) - R 1 (Z) + X 113F 1,3 (Z) + X 2 1 3 F2 13 (Z) + .

X,0 , (12.3)
V(X, Z) - R2 (Z) + X1 3 G11 3 (Z) + X 2 13 G2/ 3 (Z) +*'".
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Substitution in the first and second equations (5.3) leads to terms O(X-23):

Rl(Z)F, 3(Z) - R'(Z)F1 ,3 (Z) = O,
(12.4)

RI(Z)G1 ,3(Z) - R2(Z)F,13(Z)= O.

The first of these equations has the solution

F1 3 (Z) = CR(Z),

which gives

U(X, Z) = R;(Z) + CX' 3R'(Z) + (X 2 ' 3 ).

For Z-- co, R'(Z)-o Z + A(O) and R"(Z) 1 and thus

U(X, Z)- Z + A(O) + CX'.

On the other hand, according to (5.7)

U(X, Z)-> Z + A(X) .

However, A(X) cannot contain a term (X 1 13 ) in its expansion for small X, since this would
lead with (5.4) to infinite pressure. Thus C = 0 and F, 13 (Z) = 0. It follows from the second
equation (12.4) that then also Gj1 3 (Z) = O.

We now consider terms O(X- 11 3) in the result obtained after substitution of (12.3) into
the first equation (5.3). These are

R;(Z)F2,3 (Z) - R';(Z)F2 13 (Z) = -P 2 /3

leading to

F2 13(Z) = C1R'(Z) + particular integral.

Since A(X) neither contains a term O(X2 13 ), also C must be equal to 0. For Z-> the
particular integral in F213(Z) approaches the value P2 /3. Hence the function F213 (Z) does not
vanish, but it will not give a contribution to U(X, Z) for Z--> c.

Since the outer expansion of qI(X, Z) does not contain a term O(X113 ), it follows from
matching that the expansion of the inner solution F0(-7) for -> cannot contain a term
linear in 7 (see also Daniels [8]). Hence

1-O, Fo(1) = a2(7/
2 + A 2) + exp. small. (12.5)

The term with A2 exists because F2/3(Z) O. By substitution of (12.5) into the equation
(12.1) for F0 (0) it follows that

P2 /3 = a2A2 (12.6)
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By differentiation of (12.1) to , we get rid of P2 /3 and obtain the following problem for

Fo():

3FO4 + 2FOFo' = 0, Fo(0) = 0, F'(0) = 0, F(oo) = a2 ,

m7-0 ' , Fo(7 0) = a2( 0 + A 2 ) + exp. small, 70 = Z/X1/371o0

We apply the same similarity transformation as in Section 7 for f 0 ( 0), viz.

m1? = Co0 , Fo( 10 ) = CF,(=1), Fo(71 o) = c2F(r71,), etc.

We solve the equation 3F 4)+ 2FF'' = 0 with boundary conditions F1 (O)= 0, F(0)= 1,
F'(0) = 0 and determine F'"'(0) in such a way that Fl(*?1 ) does not contain a term linear in 77
for -71--> , that is,

I t 1 a p a t

It appears that

F''(O) = 0.839099815, F'() = 1.172886565.

Then

{F"(x) 11/3
c= { cF') = 0.948232121a/3

F(0) = c2 F;(O) = 0.899144155a~'3 ,

7 F 2(7(1) F' (c) + 0.646822758.

Substituting this in the relation

cFi(*l) -2 a2 c2 + A 2)

we obtain A2 = 1.226676231a22/ 3 = 0.981 and P213 = 0.613338116a/ 3 = 0.960. Inserting also
the value of a2, we find

X O, U(X, O)- X' 13F;(O) = 1.1249X 1 3 ,

P(X) - -0.3109 + 0.960X 2/ 3 ,

X ' 0, P(X) - P(O) + a3X = -0.3109 - 0.3216X.

After having obtained the function FO(?) and its derivatives, we consider equation (12.2),
which is linear in Go(,7). We solve this equation with boundary conditions

Go(O) = 1, G(0) = 0.

(12.7)
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Since G,,3(Z) = 0, the expansion of Go(,/) for large ,q does not contain a constant. It follows
from (12.2) that Go(,) decreases algebraically for r77- . By substitution in (12.2) the
expansion of Go(n/) appears to be

Go(1) b,2(11 346-+ -++-++- (12.9)

where the constant term and the term with 7- 2 are absent, while

1 1 2 3A1 69A
b3 = A2 b= A2 , b = A2 , b 2 b6 = A2, b - 702 

2 ~ 8 5a 2 ' 16 3 6 A2

By integrating (12.2) with boundary conditions (12.8) until = 10, we find from (12.9) a
value b2 = 0.7430. Since in reality b2 = 1.1160, the correct boundary conditions are

Go() = 1.502, G(0) = 0

and the expansion for V is

X O, V(X, O)- l1.502X "3 .

For the function A(X) we have the expansions

X t O, A(X)- 0.3456 + 0.3218X + 0.1555X 2 + 0.0536X 3 ,

X O, A(X) 0.3456 + 0.3218X + 0.1555X 2 - 0.2160X' 3 .

Finally, it can be remarked that, for X I 0, W(X) still is singular, although the singularity
is like X-113 , which is weaker than the singularity X -21 3 following from boundary-layer
theory [1]. In order to remove also the singularity O(X-113 ) we have to consider regions for
which r -1 = O(Re-a) is smaller than O(Re-3/7). It follows from Section 2 that a further
specific value for a is a = . It may be that there are still more specific values of a before
attaining a = , where the complete Navier-Stokes equations have to be taken into account.
This would be analogous to the situation at the trailing edge of a flat plate as described in [7].

13. Results in graphical form

Figure 1 shows P as a function of X, Fig. 2 shows A as function of X, Fig. 3 shows V for
Z = 0 as function of X, and Fig. 4 shows V as function of Z for some values of X. Diagrams
showing U for Z = 0 as function of X and U as function of Z for X-values are almost
identical to the corresponding diagrams for V, which is the reason why they are omitted.
Figure 5 shows Jf' {H'( )}2 d2 as function of , which determines the decrease of pressure
in z-direction in the middle deck.
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Fig. 1. The pressure in the lower deck as function of the radial coordinate.
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Fig. 3. The tangential velocity for Z = 0 as function o:
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Fig. 5. The pressure decrease as function of the axial coordinate in the middle deck.

z=Re-12, p= Re = -27-5K 61 p(x)I, where I=| {H'(d)} 2 d.

14. Conclusions

The double deck extending over a length of O(Re-3 ' 7 ) at both sides of the edge of a rotating

disk has been investigated. In the middle deck of thickness O(Re -1 12 ) additional radial and

tangential velocity components arise of O(Re- 117), while the axial component is O(Re-3 114 ).

In the usual boundary layer the orders of magnitude are Re° , Re° and Re - 1/2, respectively.
The singularity O(r - 1)-2 /3 of the classical axial velocity is removed in the middle deck of

length O(Re-3 /7 ) and replaced by a factor O(Re2/7 ), which increases the axial velocity to

the level O(Re-3'1 4 ).
In the middle deck all velocity components and also the pressure have in axial direction a

distribution which is independent of the radial coordinate r*. Only the magnitude depends
on r*. The pressure is O(Re-2/ 7 ). This pressure is due to the change in radial velocity of

O(Re- 1 /7 ) over the small distance of O(Re-3/7 ).
In the lower deck of thickness O(Re - 91 14 ) the radial velocity is O(Re-

1/7) and the

tangential velocity is equal to that of the disk O(Re ° ) with a correction O(Re-'/ 7). The axial
velocity is O(Re-5 ® 4 ) but it still contains a singularity r*-1 3. In order to remove this

singularity, regions smaller than O(Re- 3 /7) will have to be considered, in analogy to the

situation at the trailing edge of a flat plate as described by Veldman [7].
Finally, the main purpose of the investigation was to calculate a further term in the

expansion for Re--> - of the torque required for a steady rotation of the disk, and this leads
to the result

M pa5 Qf2(0.9675Re- 112 + 0.2236 Re - 13 /1 4) .
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